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Abstract The synthesis of complex asparagine-linked
glycans (N-glycans) involves a multi-step process that starts
with a five mannose N-glycan structure: [Manα1-6(Manα1-
3)Manα1-6][Manα1-3]-R where R=Manβ1-4GlcNAcβ1-
4GlcNAcβ1-Asn-protein. N -acetylglucosaminyltransferase I
(GlcNAc-TI) first catalyzes addition of GlcNAc in β1-2
linkage to the Manα1-3-R terminus of the five-mannose
structure. Mannosidase II then removes two Man residues
exposing the Manα1-6 terminus that serves as a substrate for
GlcNAc-T II and addition of a second GlcNAcβ1-2 residue.
The resulting structure is the complex N-glycan: GlcNAcβ1-
2Manα1-6(GlcNAcβ1-2Manα1-3)-R. This structure is the
precursor to a large assortment of branched complex N-
glycans involving four more N-acetylglucosaminyltransferases.
This short review describes the experiments (done in the
early 1970s) that led to the discovery of GlcNAc-TI and
II.
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It all began in Hart House at the University of Toronto in the
early 1970s. Hart House at that time was a place for male

students to meet, eat and indulge in various athletic endeavors.
Rest assured that this excellent facility has been open to both
men and women for many years. On that fateful day, shortly
after a swim in the Hart House pool, I had what turned out to
be an epic talk with Lou Siminovitch. Lou was already at that
time a highly renowned geneticist who had recently created
the University of Toronto’s first Department of Medical
Genetics. Lou told me that a bright young post-doctoral
student (Pamela Stanley) had joined his group and had
isolated mutant Chinese hamster ovary (CHO) cells selected
for resistance to the cytotoxic action of the lectin
phytohemagglutinin from Phaseolus vulgaris (L-PHA).

Lectin cytotoxicity was known to follow the interaction of a
lectin with carbohydrate moieties on the cell surface [1, 2].
Between 1971 and 1974, several groups had reported mutant
cell lines resistant to the cytotoxic effects of various lectins [3–8].
Pamela had shown her CHO mutants (selected for resistance to
L-PHA) to be resistant to other lectins that bound galactose. But
they were hypersensitive to Con A [9] suggesting loss of
terminal residues of membrane glycans. Gel electrophoretic
analysis revealed a reduction in the molecular weight of many
membrane proteins [10].We therefore postulated that her mutant
cells lacked either the galactosyltransferase (Gal-T) or N -
acetylglucosaminyltransferase (GlcNAc-T) necessary to build
the complex N-glycans attached to the cell surface
glycoproteins. N-glycans are oligosaccharides attached to the
protein by way of a GlcNAc-β1-Asn linkage. Mutant lines
similar to Pamela’s were reported between 1970 and 1975 by
the groups of Kornfeld [11, 12], Osawa [13], and Hughes [14].

As early as the 1960s [15, 16] N-glycoproteins were shown
to contain complex N-glycans with a characteristic
trisaccharide (sialic acid-Gal-GlcNAc-) at the non-reducing
ends. In 1974, Montreuil named these oligosaccharides
‘antennae’ to emphasize that a possible functional role for
these terminal structures was the transmission of biological
recognition signals [17]. At about the same time, Kobata
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reported the presence of the GlcNAcβ1-2-Man moiety on the
N-glycan core structure [18, 19].

A fairly detailed description of our journey along “The
Yellow Brick Road” of N-glycan branching has been
published [20]. I will limit this relatively short article to my
work with Lou Siminovitch and Pamela Stanley in the mid-
1970s.

At the time of my Hart House meeting with Lou, my group
had published more than a dozen papers on various
glycosyltransferases. Lou therefore conscripted me to the
project. The resulting collaboration turned out to be a major
turning point in my scientific career. Lou is still as healthy and
argumentative at 93 as he was in the 1970s! Mywife Judy and
I frequently get together with him for concerts.

Our collaboration resulted in two publications: Pamela did
the genetic work in Lou’s laboratory [21] and collaborated
with Saroja Narasimhan on the enzymework in our laboratory
[21, 22]. Lou very graciously did not put his name on the
author list of the second paper. I suspect that he felt it was
beneath his dignity to put his name on a purely biochemical
publication!

We found that the GlcNAc-T activities of extracts from
several clones of PHA-resistant CHO cells, using several
mannose-terminal glycoprotein acceptor substrates, varied
from 4 % to 55 % relative to wild type CHO cells [21]. The
absence of this GlcNAc-T activity resulted in defective
addition of GlcNAc residues to the lectin-binding
glycoproteins on the cell surface. No significant differences
between lectin-resistant and wild-type cells were noted for the
activities of sialyl-, fucosyl-, galactosyl- or mannosyltransferases
[21].

We found a significantly high level of GlcNAc-Tactivity in
our mutant cells (25 % to 55 % relative to wild type) using
some of our mannose-terminal glycoprotein acceptor
substrates. This finding suggested that wild type CHO cells
may possess at least two GlcNAc-Tenzymes that add GlcNAc
to the mannose termini of the N -glycan core and that only one

of these GlcNAc-T enzymes was absent in our PHA-resistant
CHO cells. We purified Immunoglobulin G from the serum of
a rather special multiple myeloma patient, digested the protein
with Pronase and prepared bi-antennary glycopeptides with a
large variety of terminal sugars [22]. We then used these
glycopeptides as acceptor substrates for the assay of
GlcNAc-T in our wild type and mutant CHO cells. We found
PHA-resistant CHO cells showed no significant GlcNAc-T
activity with glycopeptide acceptor substrates in which both
antennae terminated in a mannose residue but showed
significant GlcNAc-T activity with a biantennary acceptor in
which the Manα1-3Manβ1-4- antenna but not the Manα1-
6Manβ1-4- antenna was terminated by a GlcNAcβ1-2
residue. We had discovered that at least two GlcNAc-T
enzymes were required for the conversion of the core N-
glycan structure, Manα1-6(Manα1-3)Manβ1-4R, to complex
N-glycans. In subsequent work by the groups of Pamela
Stanley and Stuart Kornfeld [23–25], it was shown that under
physiological conditions, GlcNAc-TI acts on the
Man5GlcNAc2 protein-bound moiety (M5 to 2M5hy, Figs. 1,
2 and 3) thereby allowing removal of two Man residues by
mannosidase II [26] followed by the action of GlcNAc-TII
(Figs. 1, 2 and 3).

Our laboratory subsequently published a series of papers
on “The Control of Glycoprotein Synthesis” [27–37]. Details
of these studies and those of other laboratories cannot be
described in this short review. However, “The Yellow Brick
Road” [20] that resulted from these studies is shown in Fig. 2.

The functions that all these complex N-glycans (Fig. 2)
play in biology have been the subject of much research and
debate. N-glycosylation is one of the most common protein
post-translational modifications and nearly half of all known
proteins in eukaryotes are probably N-glycosylated. Since
GlcNAcT-I is essential for the formation of these N-glycans,
several studies have been published on the effects of removing
the GlcNAcT-I gene. Cultured cells and plants lacking
GlcNAcT-I appear normal but mammals have an absolute

Fig. 1 Sites of action of N-
acetylglucosaminyltransferases
(GnT) I to VI on protein-bound
N-glycans. R=GlcNAcβ1-
4GlcNAc-Asn-protein. GnT V
was first described in 1982 by
R.D. Cummings, I.S. Trowbridge
and S. Kornfeld in studies using a
PHA-resistant mouse lymphoma
cell line (J.Biol.Chem. 1982. 257,
13421–13427)
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requirement for this enzyme and die during early
embryogenesis [38–40]. Null mutations in Drosophila
melanogaster GlcNAcT-I produce defects in locomotion and
a reduced lifespan [41]. Caenorhabditis elegans has three
distinct GlcNAcT-I genes and deletion of all three genes
appears to have no effect on these organisms; however, we
have obtained evidence suggesting that GlcNAcT-I dependent

N-glycans may be involved in the response of the organism to
bacterial pathogens [42].

Taniguchi [43] has suggested that changes in oligosaccharide
structures are associated with many physiological and
pathological events, including cell growth, migration,
differentiation, tumor invasion, host-pathogen interactions, cell
trafficking, and transmembrane signaling. Dennis [44, 45] has
published several papers based on the concept that
“metabolite availability to the hexosamine and Golgi N-
glycosylation pathways exerts control over the assembly of
macromolecular complexes on the cell surface and, in this
capacity, acts upstream of signaling and gene expression” and
“most transmembrane receptors and solute transporters are
glycoproteins, and the Asn (N)-linked oligosaccharides (N-
glycans) can bind animal lectins, forming multivalent lattices
or microdomains that regulate glycoprotein mobility in the
plane of membrane.” However, much work remains to be
done on complex N-glycan function.

Acknowledgments The author is grateful to Lou Siminovitch and
Pamela Stanley for their superb collaborations in the execution of the
work described above and for their help in the writing of this review. This
work was supported by the Medical Research Council of Canada (MRC,
later replaced by the Canadian Institutes of Health Research, CIHR), The
National Cancer Institute of Canada and the National Institutes of Health
(NIH, USA).

Man 1-6
Man 1-6

Man 1-3                        Man 1-4R
Man 1-3

M5

Man 1-6
Man 1-6

Man 1-3                        Man 1-4R
GlcNAc 1-2Man 1-3

2M5hy

Man 1-6
Man 1-4R

GlcNAc 1-2Man 1-3

0, 2

GlcNAc 1-2Man 1-6
Man 1-4R

GlcNAc 1-2Man 1-3

2, 2

R = GlcNAc 1-4GlcNAc 1-N-Asn

Man 1-6
Man 1-6

Man 1-3 Man 1-4R
GlcNAc 1-2Man 1-3

bis-2M5hy

GlcNAc 1-4
Man 1-6

GlcNAc 1-2Man 1-3

bis-2,24

GlcNAc 1-4 Man 1-4R

GlcNAc 1-4

GlcNAc 1-2

Fig. 3 Abbreviated names of N-glycan structures

Absence of GlcNAc-T I results in 
complete loss of complex N-glycans

Fig. 2 This figure shows the “YellowBrick Road” for complex N-glycan
synthesis (Schachter, H. Glycobiology, vol 1 (5), pgs.453–461, 1991).
The name of the figure refers to the several different roads that Dorothy
and her friends blundered into before they arrived at the Emerald City.
Our chemical road is equally complex. The scheme on the lower right
section of the figure shows the enzymes (GlcNAc-Ts andmannosidase II)
that act at the various arrows in the Figure. The road starts on the lower
left with a glycosyltransferase that we named GlcNAc-T I. This enzyme
adds a GlcNAc residue in β1-2 linkage to the Manα3 arm of an N-glycan
carrying 5 mannose residues (M5, see Fig. 3 for explanation of
abbreviated structure names) to form the structure 2M5hy. The term
“hy” refers to the term “hybridN-glycan” because these structures contain
onlyMan residues on theManα1-6 arm and only GlcNAc residues on the

Manα1-3 arm. The term “bis” (e.g., in the structure bis-2M5hy, Fig. 3)
refers to structures with a bisecting GlcNAc, i.e. , a GlcNAc attached to
the Manβ1,4GlcNAcβ1,4GlcNAc-Asn moiety of the glycoprotein. The
addition of the bisecting GlcNAc is catalyzed by GlcNAc-T III. The
nomenclature for non-hybrid structures does not have an “M” because
the two arms of the 3-Man core structure do not have any Man residues
attached to them. The 3-Man core may be unsubstituted or may have one
or more GlcNAc residues attached. For example, the 3-Man core of the
bis-2,24 structure (Fig. 3) has a bisecting GlcNAc (bis) attached to the
Manβ1-4GlcNAcβ1-4GlcNAc-Asn moiety, a GlcNAc attached in β2
linkage to the Manα1-6 arm, and two GlcNAc residues attached in β2
and β4 linkages to the Manα1,3 arm
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